Inference of higher-order conifer relationships from a multi-locus plastid data set1

نویسندگان

  • Hardeep S. Rai
  • Patrick A. Reeves
  • Rod Peakall
  • Richard G. Olmstead
  • Sean W. Graham
چکیده

We reconstructed the broad backbone of conifer phylogeny from a survey of 15–17 plastid loci and associated noncoding regions from exemplar conifer species. Parsimony and likelihood analyses recover the same higher-order relationships, and we find strong support for most of the deep splits in conifer phylogeny, including those within our two most heavily sampled families, Araucariaceae and Cupressaceae. Our findings are broadly congruent with other recent studies, and are inferred with comparable or improved bootstrap support. The deepest phylogenetic split in conifers is inferred to be between Pinaceae and all other conifers (Cupressophyta). Our current gene and taxon sampling does not support a relationship between Pinaceae and Gnetales, observed in some published studies. Within the Cupressophyta clade, we infer well-supported relationships among Cephalotaxaceae, Cupressaceae, Sciadopityaceae, and Taxaceae. Our data support recent moves to recognize Cephalotaxus under Taxaceae, and we find strong support for a sister-group relationship between the two predominantly southern hemisphere conifer families, Araucariaceae and Podocarpaceae. A local hotspot of indel evolution shared by the latter two conifer families is identified in the coding portion of one of the plastid ribosomal protein genes. The removal of the most rapidly evolving plastid characters, as defined using a likelihood-based classification of substitution rates for the taxa considered here, is shown to have little to no effect on our inferences of higherorder conifer relationships.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic diversity of Arum L. based on plastid marker

TrnL-F region including intron trnL (UAA) and trnL (UAA) - trn (GAA) spacer in the large single-copy region of the chloroplast genome is widely used to infer phylogenetic relationships in plants. In this study, we obtained the trnL-F sequences from 8 samples of Arum L. in Iran. Phylogenetic analyses were conducted by the Bayesian inference, maximum parsimony, and maximum likelihood methods. The...

متن کامل

Testing monophyly without well-supported gene trees: evidence from multi-locus nuclear data conflicts with existing taxonomy in the snake tribe Thamnophiini.

Ideally, existing taxonomy would be consistent with phylogenetic estimates derived from rigorously analyzed data using appropriate methods. We present a multi-locus molecular analysis of the relationships among nine genera in the North American snake tribe Thamnophiini in order to test the monophyly of the crayfish snakes (genus Regina) and the earth snakes (genus Virginia). Sequence data from ...

متن کامل

Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence

BACKGROUND AND AIMS Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phy...

متن کامل

Plastid Genome Comparative and Phylogenetic Analyses of the Key Genera in Fagaceae: Highlighting the Effect of Codon Composition Bias in Phylogenetic Inference

Fagaceae is one of the largest and economically important taxa within Fagales. Considering the incongruence among inferences from plastid and nuclear genes in the previous Fagaceae phylogeny studies, we assess the performance of plastid phylogenomics in this complex family. We sequenced and assembled four complete plastid genomes (Fagus engleriana, Quercus spinosa, Quercus aquifolioides, and Qu...

متن کامل

Regeneration of Glyphosate-Tolerant Nicotiana tabacum after Plastid Transformation with a Mutated Variant of Bacterial aroA gene

Presence of antibiotic resistance markers has always been considered as one of the main safety concerns in transgenic plants and their derived products. Elimination of antibiotic selectable markers from transgenics is a major hurdle for finding efficient and safe candidates. Herbicide tolerance genes might be attractive alternatives. In this study, a variant form of the 5-enoylpyruvyl shikimate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008